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Abstract

A theory is presented for computing waves radiated from waves

on a smooth surface. With the assumption that attenuation of the

surface wave is due only to radiation and not to dissipation in the

surface material, the radiation coe�cient is derived in terms of the

attenuation factor. The excitation coe�cient is determined by the

reciprocity condition. Formulas for the shape and the spreading of the

radiated wave are derived, and some sample calculations are presented.

An investigation of resonant phase matching for nonseparable surfaces

is presented with a sample calculation. A discussion of how such

calculations might be related to resonant frequencies of nonseparable

thin shell structures is included. A description is given of nonseparable

surfaces that can be modeled in the vector form that facilitates use of

the appropriate formulas of di�erential geometry.

1. Introduction

Calculations of surface waves and of waves radi-
ated from surfaces have potential applications in such
areas as sound di�raction and shock di�raction by an

aerodynamic surface, nondestructive testing (crack
detection), mutual coupling of surface-mounted an-
tennas, underwater signal recognition, and resonance
of thin shell structures. The geometric theory of

di�raction (GTD) developed by J. B. Keller and his
associates (ref. 1) three decades ago led to many
such applications and to theories for di�raction by

a smooth body (ref. 2) and for surface waves on a
curved surface (ref. 3). This development, applica-
ble as a high frequency approximation, represented a
signi�cant breakthrough in the wave theory involving

surfaces for which the wave equation is not separa-
ble. By the GTD method, the surface waves could be
calculated by ray tracing techniques; then related to

waves in the surrounding medium by means of coef-
�cients, variously termed di�raction, excitation, ra-
diation, or launching coe�cients. These coe�cients
could be determined by exact solutions to canonical

problems, that is, tractable problems involving sepa-
rable surfaces. Thus, a large class of smooth surfaces
became amenable to surface wave analysis.

However, the results, in terms of actual use, have

been disappointing. A cursory survey of the litera-
ture yields few, if any, actual GTD calculations in-
volving nonseparable surfaces. Reference 4 describes
in detail a procedure for calculating ray paths and

wave fronts on such a surface. The purpose of this
paper is to supplement reference 4 by relating the sur-
face waves to (1) the di�racted waves or head waves
radiated into the surrounding medium, and (2) nat-

ural resonance phenomena of thin shell structures.
Equations for the radiated waves are derived, and

sample calculations illustrate the procedure. (Head
waves are waves radiated at an angle not equal to
0�.)

Rays that traverse the surface along a closed path
give rise to a resonance e�ect at critical frequencies

(ref. 5). This e�ect is observed in the di�racted or
head wave radiated from the surface. A method for
locating closed paths associated with this kind of

resonance is described, and an illustrative calculation
is included.

2. Symbols

A amplitude

�A wave front vector, pointing in
direction of wave front normal, with
magnitude equal to ray tube cross-

sectional area

cm wave speed in medium surrounding

surface

cs surface wave speed

E; F; G metric coe�cients

Er;Gr metric coe�cients along and normal

to surface ray

�E energy 
ux

e; f; g coe�cients of second fundamental
form (curvature coe�cients)

bI incident ray direction

Ik vector projection of bI onto tangent

plane

{̂; |̂ ; k̂ orthonormal base vector in direction

of x; y; and z axis, respectively
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K total (Gaussian) curvature

k wave number

em number of times surface ray tra-

verses a caustic

bN unit surface normal vector

n surface distance normal to ray
direction

p̂ unit vector de�ned by equation (32)

q̂ unit vector normal to p̂ in bT ; bN

plane

R radiation coe�cient

r(u; v) vector location of generic surface
point

s distance along ray in surrounding

medium

sP distance along ray from surface to

point P

sQ distance along ray from point P to

surface

bT unit tangent vector to surface ray

t time on surface ray

t� time on ray emitted from surface

u; v surface coordinates

û unit vector normal to p̂ and q̂

x; y; z Cartesian coordinates

x vector location of point on surface
ray

y vector location of point on ray

emitted from surface

~y; ~z coordinates of points de�ning

normalized cross-section shape

" excitation coe�cient

� parameter distinguishing individual
rays emitted from surface at time t

� angle of incidence or radiation

�g;n geodesic curvature of surface wave
front

�n;n normal curvature of surface wave
front in direction p̂

�p curvature of surface wave front in
direction p̂

�r curvature of surface ray

� parameter de�ning a local direction

on surface (see eq. (17))

� attenuation factor

�(x) homotopy function

�(x) scaling, or sizing, function

� density

� distance along ray path

d� cross-sectional area of ray tube

� torsion of surface ray

� phase

! frequency, radians

Subscripts:

i initial

f �nal

m condition in surrounding medium

o initial point of surface ray

P;Q; Pr;Qi quantity evaluated at this location

r surface ray

s surface

3. General Considerations

First, section 4.1 describes the basic assumptions
and scope of the theory. Then section 4.2 demon-
strates how a general class of smooth surfaces can be

modeled in an appropriate analytic form for the ap-
plication of the theory and procedures described in
the subsequent sections. This section is a brief sum-

mary of the method of reference 6. Section 4.3 dis-
cusses calculation of surface waves and how they are
related to waves in the surrounding medium. Sec-
tion 4.4 is a discussion of related problems. The

strengths of the radiated waves as well as the global
representation of their shapes are treated in sec-
tion 4.5. Several sample calculations of these wave
shapes are included in section 5. Section 6 discusses

the theory and calculation procedure for �nding the
closed surface ray paths that give rise to resonance
e�ects.

4. Analysis

4.1. Scope of Theory

Throughout the analysis, the emphasis is placed
on theory and methods for determining the geometric
quantities that are required for computing wave �elds

that are emitted by waves on a smooth surface. The
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primary assumptions and limitations of the theory
are (1) scalar waves, (2) real rays and surfaces,

(3) homogeneous surfaces, (4) surrounding medium
can support a wave, and (5) radiated rays do not
intersect surface rays. An attempt has been made
to minimize the complications associated with the

specialized physics associated with di�erent types of
waves. For example, the discussion is con�ned to
scalar waves. However, in much of the literature

on vector waves (ref. 7, for example) the results are
synthesized from combinations of results for scalar
waves. A brief discussion is included in section 4.4 on
some additions and modi�cations that are required

for some particular applications.

The elegant concept of complex rays, utilized in

reference 3, is not used in this analysis. Although
mathematically e�cient, such concepts tend to in-
timidate many engineers. Only real rays, real sur-
faces, and real frequencies are treated, with damping

due to radiation considered as attenuation and not
as an imaginary part of the phase.

Derivations of surface wave speeds have been

given in a multitude of papers (ref. 8 and its ref-
erences) and is not duplicated here. It is assumed
that the surface wave speed is known and that it is

constant (the surface is homogeneous). It should not
be too di�cult to extend the analysis and methods
to inhomogeneous surfaces inasmuch as a procedure
for calculating surface ray paths on such surfaces has

already been described (ref. 4). However, the anal-
ysis is considerably shortened and simpli�ed by re-
stricting it to homogeneous surfaces for which the

ray paths are geodesics.

The surface is assumed to be immersed in a
medium that will support a wave whose speed is

equal to or less than that of the surface wave speed.

Finally, assumptions concerning the convexity of
the surface need to be considered. The usual re-

striction is to smooth convex surfaces. Requiring
smoothness avoids the problems associated with the
specialized treatments required for di�raction ef-
fects resulting from discontinuities in slope or curva-

ture. Requiring convexity avoids the complications
that arise when the surface waves exist simultane-
ously with incident waves, either from the o�-surface

source (�g. 1(a)) or from previously di�racted waves
from the surface itself if it is in
ected (�g. 1(b)).
However, a global requirement of convexity is often
too severe a restriction. The only restriction required

in order to secure the desired simpli�cation is that,
for any ray under consideration, the normal curva-
ture must be positive outward over that part of the

ray path that is being investigated. For example, if

the ob ject is illuminated from a far-�eld source so
that the incident rays all have essentially the same

direction, and if the grazing rays di�ract along paths
that satisfy this requirement, then no di�culties oc-
cur if the surface is concave in the direction orthogo-
nal to the surface rays (top part of �g. 2). As a second

example, the problem of mutual coupling of surface-
mounted antennas depends only on the geodesic ray
path connecting the two antennas. Consequently,

this problem can be treated if the ray path lies along
a convex part of the surface. As a �nal example, if
one is considering the head waves excited by surface
waves which move at a speed several times greater

than the wave speed in the surrounding medium (as
is usually the case) then the requirement for convex-
ity, even in the ray direction, can be relaxed except

in the most severe cases. For these waves, the rays
are radiated from the surface at such a large angle
that they are not likely to strike another part of the
surface (bottom part of �g. 2).

Incident ray

Surface ray

(a) Interaction with incident rays.

Diffracted rays

Surface rays

(b) Interaction with di�racted rays.

Figure 1. Interaction of surface rays with incident or di�rac-

ted rays on in
ected surface.

4.2. Analytically Lofted Surfaces

As was stated in section 1, the analysis and pro-
cedures to be described are applicable to a general

class of smooth surfaces and are not restricted to
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Theory applies
to this ray;
surface convex
in this direction

Head wave

Surface ray

Figure 2. Problems for which theory is applicable on in
ected

surfaces.

surfaces for which the wave equation is separable.
The analysis assumes only that the surface can be

expressed as a vector function r of two variables:

r = r(u; v) (1)

A class of such surfaces, introduced in reference 6
for the purpose of expediting design of aerodynamic

components, is described here. These surfaces are
de�ned by specifying the shape of an initial cross
section in a plane x = xi and a �nal, or terminating,
shape at x = xf and then requiring the intermediate

cross sections to represent a smooth transition from
the initial to the �nal shape. The shapes (y(�); z(�))
of the two extreme cross sections are described para-

metrically in terms of an arbitrary parameter. This
parameter might be, for example , the normalized y
coordinate, the normalized arc length, the angle in
polar coordinates, or the ellipse angle parameter.

Let �(x) be a function, varying smoothly and
monotonically from 0 to 1 as x varies from xi to xf
(a homotopy function). Then, for xi � x � xf , a
cross-section shape is de�ned by

~y(x; �) = [1� �(x)] yi(�)+ �(x) yf(�) (2a)

~z(x; �) = [1 ��(x)] zi(�)+�(x) zf(�) (2b)

These shapes vary smoothly from the initial shape at
x = xi to the terminating shape at x = xf . By taking

� as a normalized coordinate, the size variation of

the cross sections can be speci�ed by prescribing a
scaling function �(x), which varies smoothly but not

necessarily monotonically from an initial to a �nal
value as x varies from x = xi to x = xf. The scaled
variables are de�ned by

y(x; �) = �(x) ~y(x; �) (3a)

z(x; �) = �(x) ~z(x; �) (3b)

The vector equation of this transition surface is

r = x{̂+ y(x; � )̂| + z(x; �)k̂ (4)

which has the required form (eq. (1)) where the sur-
face variables (u; v) are (x; �). For modeling com-

plicated shapes, � may be allowed to vary with � as
well as withx, or one may take di�erent scaling func-
tions (�y; �z ) for the (y; z) coordinates. However, for
illustrative purposes, equations (3) describe a su�-

ciently general class of surfaces. The x = Constant
lines describe the cross-section shapes, and the � =
Constant shapes describe the lofting lines. The �rst

derivatives are

rx = {̂ +

�
d�

dx
~y + �

d�

dx
(yf � yi)

�
|̂

+

�
d�

dx
~z + �

d�

dx
(zf � zi)

�
k̂ (5a)

r� = �

�
(1 ��)

dyi
d�

+ �
dyf

d�

�
|̂

+ �

�
(1� �)

dzi

d�
+ �

dzf

d�

�
k̂ (5b)

The second derivatives are

rxx =

�
d2�

dx2
~y + 2

d�

dx

d�

dx
(yf � yi) + �

d2�

dx2
(yf �yi)

�
|̂

+

�
d2�

dx2
~z + 2

d�

dx

d�

dx
(zf � zi )+ �

d2�

dx2
(zf � z i)

�
k̂ (6a)

rx� =
d�

dx

�
(1� �)

dyi

d�
+ �

dyf

d�
+�

d�

dx

�
dyf

d�
�

dyi

d�

��
|̂

+
d�

d�

�
(1� �)

dzi
d�

+ �
dzf

d�
+ �

d�

dx

�
dzf

d�
�

dzi
d�

��
k̂ (6b)

r�� = �

�
(1 � �)

d2yi

d�2
+ �

d2yf

d� 2

�
|̂

+ �

�
(1 � �)

d2zi

d�2
+ �

d2zf

d�2

�
k̂ (6c)
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With equations (4) through (6) all the geometric
parameters required for the surface wave calculations

can be computed .

4.3. Ray Tubes and Ray Strips

The surface wave speed is assumed to be constant.
Consequently the ray paths, which by Fermat's prin-
ciple are least time paths, will also be paths of min-

imum distance, or geodesic lines. Given a point on
the surface and an initial direction, a geodesic hav-
ing these initial conditions can be calculated by a

marching procedure. (See ref. 4 for details.)

For the purpose of analyzing the surface rays,

two surface coordinate systems are utilized. One is
the natural (u; v) coordinate system that is used to
de�ne the surface itself. For this system, the metric

coe�cients are

E = ru � ru (7a)

F = ru � rv (7b)

G = rv � rv (7c)

and the discriminant is

H =
p
EG � F 2 (8)

The local surface normal is

bN =
ru � rv

H
(9)

and the curvature coe�cients, or coe�cients of the

second fundamental form, are

e = ruu � bN (10a)

f = ruv � bN (10b)

g = rvv � bN (10c)

where the notation is consistent with that of refer-
ence 9.

The second coordinate system used consists of

time t along a family of rays all initiated at a given
time to and a surface coordinate normal to the rays
(�g. 3). Thus, incremental distance along the rays is

σ

v = Constantη  = Constant
(rays)

t = Constant
(surface

wave fronts)

dn =   G   dηr

u = Constant

d   = cs dt

Figure 3. Basic geometry illustrating surface parameters

u; v; t; and � .

d� =
p
Er = cs dt (11)

The incremental arc length normal to the rays (that
is, along the surface wave fronts) is

dn =
p
Gr d� (12)

where Gr is to be determined and d� is the arbitrary
increment that distinguishes two adjacent rays. It

can be taken as the distance between the rays along
the initial excitation line. The metric coe�cient
Gr is determined as follows. As each point (ur ; vr)

is computed, the local values of e; f; g, and H

are computed. From these, the local value of the
Gaussian curvature K is calculated by the formula

K =
eg� f2

H2
(13)

Then Gr is computed by numerical integration of the
equation

d2
p
Gr

dt2
+ c2sK

p
Gr = 0 (14)

(The factor c2s was inadvertently omitted in equa-
tions (25) and (29) of ref. 4.) The geodesic curvature

of the surface wave front is also needed. It is obtained
from Gr by the formula

�g;n =
1

p
Gr

d
p
Gr

d�
=

1

cs
p
Gr

d
p
Gr

dt
(15)

The geodesic curvature of the ray itself is zero by
de�nition. The local surface normal curvature �n;r
in the direction of the ray is

�n;r =
e + 2f�+ g�2

E+ 2F �+ G�2
(16)

where

� =
dv

du
(17)
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on the ray. The normal curvature in the direction of
the wave front is similarly

�n;n =
e + 2f�n + g�

2
n

E + 2F�n + G�2n
(18)

where �n is the direction orthogonal to the rays.

The initial locations and directions for rays ex-
cited by an o�-surface source are determined as fol-

lows. Let bI = I1̂{ + I2̂| + I3k̂ denote the direction
vector from the source to an arbitrary point (u; v) on

the surface. Then at (u; v), the conditions

bI(u;v) � bN (u;v) = cos � (19)

where

sin � =
cm

cs

(20)

must be satis�ed. The locus of the initial excita-
tion line is then found by numerical solution of equa-

tion (19). In practice, one usually selects values of
u or v and solves equation (19) for the remaining
variable (e.g., search along a u = Constant line for a
value of v that satis�es the equation). For a far-�eld

source, bI is constant, and for Franz (creeping) waves
initiated by grazing rays, cos � = 0.

To determine the initial ray direction �o , we take
a step dr from ro at (u;v):

dr= (xu du+ xv dv)̂{+ (yu du+ yv dv)̂|

+ (zu du+ zv dv)k̂ (21)

If the surface rays are launched by grazing rays

(� = 90�), dr must be parallel to b
I . If � < 90�, dr

must still be parallel to the projection of bI onto the
tangent plane at ro . In either case, the components of

dr must be proportional to those of Ik �
b
I�(bI � bN) bN .

For example,

yu du+ yv dv

xu du+ xv dv
=

Ik;2

Ik;1
(22a)

yu+ yv�o

xu+ xv�o

=
Ik;2

Ik;1
(22b)

�o =

yu �

�
Ik;2

Ik;1

�
xu

xv � yv

(22c)

Clearly, any two components of dr could have been

chosen for this calculation.

Let As denote the amplitude of the surface wave.
Then, following the analysis of reference 2 (eqs. (4)

through (6)), we assume that the energy radiated
into the medium from an increment d� of a ray strip
is proportional to A

2
s and to the area d� dn of the

ray strip that radiates this energy. Thus,

�scs

h
A
2
s (� + d�) dn (� + d�)�A

2
s(�) dn d�

i

= �scs

h
2�(�)A2

s dn d�

i
(23)

where, again consistent with reference 2, 2�(�) is
taken to be the proportionality constant. The at-

tenuation factor � is preferably determined by ex-
periment if such data are available, but otherwise,
it is determined by solution of the wave equation
for a canonical problem. Expressions for � are tab-

ulated in reference 2 for several types of boundary
conditions.

Equation (23) leads to the di�erential equation

d

d�
(A2

s dn �scs) = �2�(A2
s dn �scs) (24a)

d(A2
s dn �scs) = �2�(A2

s dn �scs) d� (24b)

whose solution is

As(�) = A�;o

�
dno

dn

�1=2

exp

�
�

Z
�

0
�(�) d�

�
(25)

The phase on the ray strip is

� = �o + k� (26a)

� = � + kcst (26b)

For the rays radiated from the surface, the GTD
theory assumes that the amplitude of the radiated
ray is proportional to the amplitude of the surface
ray (ref. 3):

Ar = RAs (27)

For the radiated ray tube, the energy 
ux is

�Er = A
2
r d� �mcm (28)

where d� is the cross-sectional area of the ray tube.
At the surface (�g. 4),
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θ

d  s = dn d    cos    τ σ

dn
dσ

(cos    + s  r) d  σθ

(1 +   ps) dn

κ

κN̂

θ

Figure 4. Geometry of ray tube cross-sectional area.

d�s = dn d� cos � (29)

Equating the expression in equation (28) to the mag-
nitude of the energy 
ux in equation (24b) and using

equations (27) and (29) yield

2�A2
s�scs d� dn = R

2
A
2
s�mcm dn d� cos � (30)

from which

R
2 =

2�

cos �

�scs

�mcm

(31)

This method of obtaining the radiation coe�cient
from the attenuation factor � could also be applied
inverse ly. That is, ifR were determined directly from

a solution to a canonical problem, then � could be
obtained from R.

Let p̂ denote the direction vector of a radiated ray

p̂ = sin � bT + cos � bN (32)

and let q̂ denote the unit vector normal to p̂ in theb
T;

b
N plane. (See �g. 5.) The change in p̂ over the

distance �, in the bT; bN plane, is

û
T̂

P̂N̂
q̂

θ

Figure 5. Orientation of unit vectors in tangent (bT; û) plane
and in radiation (bT; bN) plane.

�
q̂ �

dp̂

d�

�
d� =

�
cos � bT � sin � bN�

�

�
�r sin � bN

� �r cos � bT� d� (33a)

�
q̂ �

dp̂

d�

�
d� = �r d� (33b)

Let �n denote the curvature vector of the surface
wave front. The variation of p̂ over the distance dn

along the surface wave front is

(�n � p̂) = (�n;n cos � + �n;g sin �) dn � �p dn

(34)

The angular increment along the ray over distance

d� is given by equation (34), and the angular incre-
ment over dn normal to the ray is given by equa-
tion (33b). Thus the spreading of rays emitted from

this incremental area is s�r d� in the bN; bT plane, and

s�p dn normal to this plane. The actual ray tube
area at distance s from the surface, measured along
the ray, is obtained by adding these increments to
the increments at the surface (eq. (29)), which yie lds

(see �g. 4)

d�s = (cos � + s�r) d� (1+ �ps) dn (35)

By formulas (27), (29), and (35), the amplitude
AP at point P is given by

A
2
r

A
2
P

=
(cos � d� +�rs d�)(dn+ �ps dn)

d� dn cos �
(36a)

A
2
r

A
2
P

= (cos � +�rs)(1 +�ps) sec � (36b)

where s is the distance from the radiation point Pr
to P . A more general form of equation (35) is given

in reference 9.

A problem arises with Franz waves for which
� = �

2 , since in this case R in equation (31) increases
inde�nitely. The singular nature of the radiation

coe�cient and the caustic condition at the surface
are discussed at length in the literature (refs. 2 and 3,
for example). However, this singular character has
a somewhat arti�cial quality, since it arises from

the manner in which the physical phenomena are
modeled rather than the actual physical process. If
we relate the amplitude at P directly to the surface

wave amplitude by equations (27), (31), and (36), we
get the nonsingular result

A
2
P

A2
s

=
�
AP

Ar

�2 �
Ar

As

�2

= R
2 cos �

(cos � + �r sP )(1 + �psP)

=
2�

(cos � + �r sP )(1+ �psP)

�scs

�mcm

(37)
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If the surface wave is excited by an o�-surface
source at Q (�g. 6), the initial amplitude on the

surface at the excitation point Qi is related to that
of the incoming wave by an excitation coe�cient ":

N̂

N̂

θ

θ

Q

Qi

Pr

P

Figure 6. Incident, surface, and radiated rays.

As;0 = "(Qi) Ai (38)

where Ai is related to a source strength eA at Q by

A
2
i =

eA2

sQ

(39)

(See �g. 6.) Combining equations (38), (37), (25),
and (36) yields

A
2
P
=

�
AP

As

�2�
As

As;o

�2�
As;o

Ai

�2 �
AieA
�2 eA2 (40a)

=

�
2�

(cos �+ �r sP )(1 + �psP)

�
Pr

�
dno

dn

�

� exp

�
�

Z
�

0

� d�

�
"(Qi)

sQ

eA2 (40b)

where the subscript Pr denotes that the quantity is

evaluated at the radiation point Pr .

To determine the excitation coe�cient "Q, we ap-

ply the reciprocity principle, which states that an
equal �eld is obtained at Q if the source is located at
P instead of at Q. Since for both cases the surface ray
path is the same, the spreading factor dno=dn is the

same if the directions are reversed on the path. This
follows from equations (12) and (14), which demon-
strate that the ray strip spreading is determined by

the distribution of the Gaussian curvature along the

path. Furthermore, the attenuation due to spread-
ing is clearly the same for both the forward and the

reverse directions. Consequently, when the forward
and reverse amplitudes obtained from equation (40b)
are equated, the reciprocity principle yields

"Q

sQ

�
(cos �+ �rs)(1+ �ps)

�
Pr

=
"P

sP

�
(cos �+ �rs)(1+ �ps)

�
Qi

(41)

Thus, in order for reciprocity to be satis�ed ("P =
"Q), we must have

"Q =
sQ�

(cos �+ �r s)(1+ �ps)
�
Qi

(42)

In this formula, (�p)Qi
is the component in the

direction �bI of the curvature vector of the initial
wave front, which is found by solving equation (19)

numerically, as was discussed earlier. Also, �r is
the surface curvature in the surface direction �o as
computed from equations (16) and (22c).

The phase !t along the ray path is

� = !

 
tQ +

sQ

cm

+
1

cs

Z
Pr

Qi

d� +
sP

cm

!
(43)

Appropriate phase jumps of integer multiples of �=2
must be included if the ray traverses caustic points.

4.4. Discussion of Related Problems

In deriving the relationship between the attenua-
tion factor and the radiation coe�cient, the attenu-
ation is assumed to be caused only by the radiation

of energy from the surface. If the waves penetrate
the surface and attenuation also occurs because of
dissipation or inhomogeneity, such attenuation must

be included in the analysis. Reference 9 considers
waves in a ray tube adjacent to the surface and ob-
tains a somewhat di�erent result from that of Levy
and Keller (ref. 2) for waves satisfying the impedance

boundary condition at the surface. For certain elas-
tic waves, a change in wave type occurs as the wave
in the medium excites a surface wave or is emitted
from the surface (ref. 10). As might be expected, in

this case the factor �mcm=�s cs in equation (31) is not
unity.

As was mentioned earlier, vector waves are often

treated by synthesizing the solutions from those of
scalar waves. The polarization of the waves, however,
depends on the torsion of the ray path. The torsion

may be computed at each point on the path by �rst

8



computing bN and the quotient d bN=d� and using the
formula (ref. 11, p. 201)

�(�)= bT �
bN �

d bN
d�

(44)

Actually, the quantity d bN=d� is the crucial factor
since, for perfectly conducting surfaces, the wave is

polarized normal to the surface.

4.5. Wave Fronts and Strengths

In section 4.3 it was shown that one can compute

surface geodesic ray paths and express the location of
points on these rays in terms of coordinates t and �,
where t is time elapsed from the point of excitation

and � distinguishes the individual rays. Now the
local wave front surface at an arbitrary time t� is
expressed in the vector form of equation (1) in order
to more easily study the surface geometry of the

wave front. For this purpose the surface variables
u; v in equation (1) are taken to be (t; �). Since
cs is assumed to be constant, we could replace the

coordinate t with � = cst. Denoting a point on a
surface ray by x(t; �), the ray emitted from x(t; �)
passes at time t� through the point

y(t; �) = x(t; �) + cm(t
�
� t) p̂(t; �) (45)

where p̂ is the direction vector de�ned by equa-
tion (32). Utilizing equation (45), which has the
required form of equation (1), we can derive an ex-

pression for the wave front surface area element and
thereby verify formula (35) for the ray tube cross-
sectional area.

We denote the direction normal to p̂ in the bT ; bN
plane by q̂ (�g. 5). Then

q̂(t; �) = cos � bT � sin � bN (46)

We can solve equations (32) and (46) for bT
bT = sin � p̂ +cos � q̂ (47)

We de�ne a unit vector û orthogonal to the bN ; bT
plane, which is also the p̂; q̂ plane. (See �g. 5.) Then
p̂; q̂ ; û form an orthonormal set. The derivative of
y(t; �) with respect to t is

dy

dt
=

dx

dt
� cmp̂ + s

dp̂

dt
(48a)

This equation can also be written

dy

dt
= cs bT � cmp̂ + scs

dp̂

d�
(48b)

where, from equation (32) and the Frenet formulas,

dp̂

d�
= sin �

dbT
d�

+ cos �
d bN
d�

(49a)

dp̂

d�
= sin � �r bN +cos �

�
�r bT +�rû

�
(49b)

dp̂

d�
= �rq̂ +cos � �rû (49c)

where �r is the torsion of the surface ray and bN
points are in the opposite direction from the curvi-
linear vector of the geodesic ray path.

Substituting equations (47) and (49c) into (48b)

yields

dy

dt
= cs sin � p̂+ cs cos � q̂ � cmp̂ + scs�rq̂

+ scs cos � �rû (50a)

which, with the assumption of equation (20),

becomes

dy

dt
= cs(cos � + s�r )̂q + css cos � �rû (50b)

Di�erentiating y with respect to � yields

dy

d�
=

dx

d�
+ s

dp̂

d�
(51)

where

dp̂

d�
=
p
Gr

dp̂

dn
(52a)

dp̂

d�
=
p
Gr

 
sin �

dbT
dn

+ cos �
d bN
dn

!
(52b)

dp̂

d�
=
p
Gr
�
sin � �n;gû+ cos � �n;nû

�
(52c)

dp̂

d�
=
p
Gr�pû (52d)

Thus
dy

d�
=
p
Gr(1 + s�p)û (53)

The wave front vector is

�A =

�
dy

dt
�

dy

d�

�
d� dt (54)

9



which yields (with eqs. (11), (12), (50b), and (53))

�A =

��������
p̂ q̂ û

0 cs(cos �+ �rs) cs cos � s �r

0 0
p
Gr(1 + s�p)

��������
d� dn

cs

p
Go

(55a)

= (1+ s�p)(cos �+ �rs) dn d� p̂ (55b)

Thus p̂ is the wave front normal direction, and the
ray tube cross-section area is

d� = (1 + s�p)(cos � +�rs) dn d� (56)

which is consistent with that determined in the pre-
vious section (see eq. (35)) and, thus, provides an

independent veri�cation of the theory. One could
also di�erentiate equations (50b) and (53) to obtain
the curvatures of the wave front surface in terms of

those of the radiating surface.

It is of interest to study the wave front equation
(eq. (45)) in the limiting two-dimensional case. That
is, we consider waves radiated from a cylinder hav-
ing a smooth cross-section shape which is arbitrary

within the constraint that none of the radiated rays
are incident on the surface. Then equation (45) be-
comes

y(t)= x(t) + cm(t� � t)p̂(t) (57)

and equation (50b) simpli�es to

dy

dt
= (cs cos �+ �r )̂q(t) (58)

In particular, if we treat Franz (creeping) waves
initiated by a ray grazing a convex cylinder at a
point Q (�g. 7), then, since for this case cs = cm,

the constant phase at the wave front corresponds to
a constant distance the rays travel over the surface
from Qi to x(t) and from x(t) to y . Consequently,

Two-dimensional
cross-section shape Involute of

cross-section
shape

Figure 7. Shape of di�racted wave front emitted by Franz

waves.

the di�racted wave front represents the involute of
the curve that de�nes the cross-section shape of the

di�racting surface. In this case, equations (57) and
(58) become, respectively,

y(t)= x(t)+ cm(t� � t)bT(t) (59)

and
dy

dt
= �r(t) bN (t) (60)

5. Sample Calculations

In the following examples, the ray calculations

were performed by the method of reference 4. The
high accuracy of the method was veri�ed by compar-
ing a numerical calculation with the known helical

geodesic on a circular cylinder. For the illustrative
example shown in �gure 8, the surface was de�ned
with the initial cross section taken to be an ellipse
having a ratio of minor to major axis of 1=3, and the

base section is an ellipse having a ratio of 0.58. This
surface is smooth and convex but not separable. Fig-
ure 8(a) shows the results of a Franz wave calculation

with an illuminating beam having direction numbers
(1,7,2). For clarity in presentation, only a portion
of the surface wave and the corresponding di�racted
wave are shown. Figures 8(b) and (c) show a simi-

lar calculation from di�erent viewing angles but with
the surface wave speed cs three times greater than the
wave speed cm in the medium.

6. Resonant Phase Matching

If we compute a geodesic ray path that completely

circumnavigates a smooth body, the path may close
on itself. That is, it may return to the initial point
propagating in the initial direction. This always

occurs on spheres and in two-dimensional situations.
Furthermore, it occurs for propagation along the
maximum or minimum meridian line on a spheroid
or any smooth closed surface that has a maximum or

minimum meridian.

When such a closed path exists, a resonant condi-

tion occurs for a frequency such that the phase accu-
mulation over the closed path is an integer multiple
m of 2� . Since surface waves over closed surfaces

form caustics, this phase accumulation must include
a shift of �=2 for each time the ray traverses a caustic
point. In equation form

!

cs

I
ds� em �

2
= 2�m (61)

10









this problem is the direct geodesic distance between
the antennas.

As was mentioned, several papers by �Uberall and

his associates (refs. 12 and 13) have discussed the
relationship between surface wave frequencies and
the normal modes of an elastic body, and calculations
were performed for some separable surfaces. With

the present capability to determine ray paths on a
broad class of nonseparable surfaces, the potential
exists for a variety of applications relating to elastic

phenomena. Consider, for example, Lamb waves in
a thin shell structure (with the usual restriction that
the radii of curvature are large relative to the wave
length, so that the wave speed is essentially constant

for a given frequency). Then, in addition to the usual
modes associated with ray paths along the maximum
and minimummeridian lines, the possibility exists for

a weaker kind of resonance associated with closed ray
paths such as that shown in �gure 9.

7. Concluding Remarks

A theory has been presented for computing sur-
face waves and waves radiated from a smooth surface.
With the assumption that attenuation of the surface

wave is due only to radiation, the radiation coe�cient
was derived in terms of the attenuation factor. Then
the excitation coe�cient was determined by the reci-

procity condition. Formulas for the shapes and the
spreading of the radiated waves were derived, and
some sample calculations were given. An investiga-
tion of resonant phase matching for nonseparable sur-

faces was presented with a sample calculation. Also
included was a discussion of how such calculations
might be related to resonant frequencies of nonsepa-

rable thin shell structures. A description was given
of nonseparable surfaces that can be modeled in the
vector form that facilitates use of the appropriate
formulas of di�erential geometry.

NASA Langley Research Center

Hampton, VA 23665-5225

February 20, 1992
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